SPHERICAL MEANS AND PINNED DISTANCE SETS

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spherical Means and Pinned Distance Sets

We use mixed norm estimates for the spherical averaging operator to obtain some results concerning pinned distance sets.

متن کامل

Spherical two-distance sets

A set S of unit vectors in n−dimensional Euclidean space is called spherical two-distance set, if there are two numbers a and b so that the inner products of distinct vectors of S are either a or b. The largest cardinality g(n) of spherical two-distance sets does not exceed n(n+3)/2. This upper bound is known to be tight for n = 2, 6, 22. The set of midpoints of the edges of a regular simplex g...

متن کامل

New Bounds for Equiangular Lines and Spherical Two-Distance Sets

The set of points in a metric space is called an s-distance set if pairwise distances between these points admit only s distinct values. Two-distance spherical sets with the set of scalar products {α,−α}, α ∈ [0, 1), are called equiangular. The problem of determining the maximal size of s-distance sets in various spaces has a long history in mathematics. We determine a new method of bounding th...

متن کامل

Pinned distance sets, Wolff’s exponent in finite fields and improved sum-product estimates

An analog of the Falconer distance problem in vector spaces over finite fields asks for the threshold α > 0 such that |∆(E)| & q whenever |E| & q, where E ⊂ Fq , the d-dimensional vector space over a finite field with q elements (not necessarily prime). Here ∆(E) = {(x1 − y1) 2 + · · ·+ (xd − yd) 2 : x, y ∈ E}. The second listed author and Misha Rudnev ([4]) established the threshold d+1 2 , an...

متن کامل

Pinned distance sets, k-simplices, Wolff’s exponent in finite fields and sum-product estimates

An analog of the Falconer distance problem in vector spaces over finite fields asks for the threshold α > 0 such that |∆(E)| & q whenever |E| & q, where E ⊂ Fq , the d-dimensional vector space over a finite field with q elements (not necessarily prime). Here ∆(E) = {(x1 − y1) 2 + · · · + (xd − yd) 2 : x, y ∈ E}. The fourth listed author and Misha Rudnev ([20]) established the threshold d+1 2 , ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications of the Korean Mathematical Society

سال: 2015

ISSN: 1225-1763

DOI: 10.4134/ckms.2015.30.1.023